99麻豆精品原创视频在线观看-久久艹免费视频网站-久久操在线观看视频-久久精品久久综合97久久综合精品-激情五月天丁香综合-久久久国产99久久国产久一-国产亚洲美女精品久久久-久久国产精品99久久久-久久久久久久久91国产精品,韩国巨乳人妻的诱惑,国产中文字幕亚洲区,国产乱人妻精品久久久

供求商機(jī)
您現(xiàn)在的位置:首頁(yè) > 供求商機(jī) > 英國(guó)Ossila鈣鈦礦產(chǎn)品

英國(guó)Ossila鈣鈦礦產(chǎn)品

英國(guó)Ossila鈣鈦礦產(chǎn)品
點(diǎn)擊放大
供應(yīng)數(shù)量:
4330
發(fā)布日期:
2025/10/4
有效日期:
2026/4/4
原 產(chǎn) 地:
英國(guó)
已獲點(diǎn)擊:
4330
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動(dòng)物實(shí)驗(yàn)研究等

I101 perovskite Ink has been specially formulated in the Ossila laboratories to be deposited by spin coating. Our I101 perovskite ink is designed for air processing in low-humidity environments. Using a mixture of methyl ammonium iodide (MAI) and lead chloride (PbCl) dissolved in dimethyl formamide our I101 perovskite ink will convert to a methylammonium lead halide perovskite under heat. The final product is a methylammonium lead iodide perovskite with trace amounts of chlorine given by the formula CH3NH3PbI3-xClx. For information on the various applications of the mixed halide CH3NH3PbI3-xClx perovskite see our applications section.

The main use of CH3NH3PbI3-xClx is in the fabrication of solar cells, our I101 ink can be used in both standard and inverted architectures; and can achieve power conversion efficiency (PCE) values of over 13% (see our device performance section for more information). The ink specifications can be found below along with complete guides on the processing of perovskite inks for standard architecture and inverted architectures. Using our I101 recipe provided, 5ml of solution is capable of processing up to 160 substrates (1,280 devices using our 8-pixel substrate design).

 

Perovskite Ink

I101 is packaged as 10 individual vials containing 0.5 ml of solution capable of coating up to 160 substrates. I101 can also be bought in bulk (30 ml) with a 25% discount over our standard order sizes.

 

Specifications

 

Perovskite Type

CH3NH3PbI3-xClx

Precursor Materials

Methyl Ammonium Iodide (99.9%), Lead Chloride (99.999%)

Precursor Ratio

3:1

Solvent

Dimethyl Formamide (99.8%)

Optical Bandgap

1.56-1.59eV

Energy Levels

Valence Band Minimum 5.4eV, Conduction Band Minimum 3.9eV

Emission Peak

770-780nm (PL); 755-770nm (EL)

Standard Architecture PCE

13.7% Peak; 13.0% ±0.25% Average

Inverted Architecture PCE

13.1% Peak; 11.9% ±0.50% Average

Processing Conditions

Air processing; low humidity (20% to 35%)

Packaging

10x 0.5ml sealed amber vials; 3 x 10ml sealed amber vials

 

I101 Perovskite Applications

Perovskite Photovoltaics

The single biggest application of perovskite materials is for photovoltaic devices; perovskites fabricated from MAI:PbCl precursors have been used in several papers to achieve high power conversion efficiencies. The advantage of using MAI:PbCl as precursor materials is the ability to process in an ambient environment.

References

  • Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. J. Snaith et. al. Science. 338 (2012) 643-647 DOI: 10.1126/science.1228604
  • Additive enhanced crystallization of solution-processed perovskite for highly efficient planar- heterojunction solar cells. K-Y. Jen et. al. Adv. Mater. 26 (2014) 3748-3754 DOI: 10.1002/adma.201400231
  • Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. J. Snaith et. al. 24 (2014) 151-157 DOI: 10.1002/adfm.201302090

 

Perovskite LED and Lasing

Due to the high photoluminescence quantum yield of perovskites at room temperature, the application of these materials in light-emitting diodes (LEDs) is of great interest. Devices made using MAI:PbCl precursors show strong emission in the near-infrared region at 755nm. Additionally, recent work has shown lasing within this material.

References

  • Bright light-emitting diodes based on organometal halide perovskite. R. H. Friend et. al. Nature Nanotechnology, 9 (2014) 687-692 doi:10.1038/nnano.2014.149
  • Interfacial control towards efficient and low-voltage perovskite light-emitting diodes. Hang et. al. Adv. Mater. 27 (2015) 2311-2316 DOI: 10.1002/adma.201405217
  • High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. H. Friend et. al. J. Phys. Chem. Lett. 5 (2014)1421-1426 DOI: 10.1021/jz5005285

 

Scale-Up Processing

Due to the ability to process perovskites based upon MAI:PbCl precursors in air, the material opens up the possibility of applications in large-scale deposition techniques. Several different scalable techniques, such as slot-die coating and spray coating have been used to deposit this material.

References

  • Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. C. Krebs et. al. Adv. Energy Mater. 5 (2015) 1500569 DOI: 10.1002/aenm.201500569
  • Highly efficient, felixble, indium-free perovskite solar cells employing metallic substrates, M. Watson et. al. J. Mater. Chem. A, 3 (2015) 9141-9145 DOI: 10.1039/C5TA01755F
  • Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. G. Lidzey et. al. Energy Environ. Sci. 7 (2014) 2944-2950 DOI: 10.1039/C4EE01546K

 

I101 Perovskite Processing Guides

Standard Architecture:

FTO/TiO2(Compact)/TiO2(Mesoporous)/I101/Spiro-OMeTAD/Au

Below is a condensed summary of our fabrication routine for standard architecture devices using our I101 ink.

 

  1. FTO etching:
  • A complete guide to FTO etching can be found on our FTO product page along with an instructional video
  1. Substrate cleaning:
  • Sonicate FTO for 5 minutes in hot (70°C) DI water with the addition of 1% Hellmanex
  • Dump-rinse twice in boiling DI water
  • Sonicate FTO for 5 minutes in Isopropyl alcohol
  • Dump-rinse twice in boiling DI water
  • Dry FTO using filtered compressed gas
  • Place the FTO into the UV Ozone Cleaner and leave for 10 minutes
  1. Compact TiO2 deposition:
  • Prepare a solution of titanium diisopropoxide bis(acetylacetonate) at a volumetric percentage of 8% in isopropyl alcohol (approximay 20ml will be needed)
  • Mask off the substrates such that only the active area of the devices are exposed
  • Place the substrates onto a hotplate set to 450°C
  • Using a nitrogen/compressed air gun set it to a pressure of 16-18 psi and spray the solution onto the substrates. Leave the solution for 30 seconds to dry, and sinter and repeat the spray process again. Repeat this until you get approximay 40 nm of film, this should take around 10 sprays
  • Cover the substrates loosely with foil and leave to sinter for 30 minutes
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Mesoporous TiO2 deposition:
  • Using a mesoporous paste with a particle size of 18nm and pore size of 30nm, prepare a mesoporous film of approximay 200 nm thick
  • Place the substrates back on the hotplate, loosely cover with foil and sinter the substrates at 450°C for 1 hour
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete redissolution of solutes
  • Allow I101 ink to cool to room temperature before deposition
  • Set the hotplate temperature to 90°C
  • Static spin coating: place substrate into spin coater, dispense 30-50 μl and start spinning at 2000 rpm for 30 s
  • Place substrate onto the hotplate and anneal for 120 minutes
  • After all FTO substrates are coated, reduce the hotplate temperature to 90°C
  • After annealing, transfer the substrates into a glovebox environment.
  1. Spiro-OMeTAD deposition (in air):
  • Prepare the following solutions; Spiro-OMeTAD at a concentration of 97 mg/ml in chlorobenzene, Li-TFSI at a concentration of 175 mg/ml in acetonitrile, and TBP at a volumetric percentage of 46.6% in acetonitrile
  • Combine 1000 μl Spiro-OMeTAD, 30.2 μl Li-TFSI, and 9.7 μl TBP solutions
  • Dispense 50 µl of the combined solution onto the perovskite, allowing it to spread across the substrate
  • Spin at 2000 rpm for 30 seconds
  • Use a high-precision mirco cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Spiro-OMeTAD oxidation and anode deposition:
  • Place the substrates inside a desiccator in air and leave the substrates for 12 hours in the dark to allow for oxidation of the spiro-OMeTAD film (The amount of time required for complete oxidation of the spiro-OMeTAD may vary depending upon thickness and environmental conditions. Additional oxidation steps may be needed after deposition of anode)
  • Using thermal evaporation, deposit an 80 nm layer of gold through a shadow mask to define an active area for your device
  • Devices do not need to be encapsulated for measuring performance
  • If encapsulation is desired, the spiro-OMeTAD should be allowed to fully oxidise again before substrates are transferred into the glovebox and encapsulated

Inverted Architecture:

ITO/PEDOT:PSS/I101/PC70BM/Ca/Al

For a complete step-by-step guide please see our full perovskite solar cells fabrication guide or our instructional video guide below.

Below is a condensed summary of our routine, which is also available to download as a PDF to enable you to print and laminate for use in the clean room.

 

  1. Substrate cleaning:
  • See substrate cleaning section of standard architecture device guide
  1. PEDOT:PSS deposition:
  • Filter PEDOT:PSS using a 0.45 µm PVDF filter
  • Dispense 35 µl of the filtered PEDOT:PSS solution onto ITO spinning at 6000 rpm for 30s
  • Place substrate onto a hotplate at 120°C
  • After all ITO substrates are coated, reduce the hotplate temperature to 90°C
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete re-dissolution of solutes
  • Transfer heated substrate onto spin coater, start spinning at 4000 rpm and dispense 30 μl of I101 ink and leave to spin for 30 s
  • Place substrate back onto the hotplate at 90°C for 120 minutes
  • After all ITO substrates are coated, reduce the hotplate temperature to 90°C
  • After annealing transfer the substrates into a glovebox environment.
  1. PC70BM deposition (in nitrogen glovebox):
  • Prepare a solution of PC70BM at 50 mg/ml in chlorobenzene and stir for 3 to 5 hours
  • Transfer perovskite-coated substrates into the glovebox
  • Dispense 20 µl of PC70BM solution onto the spinning substrate at 1000 rpm and spin for 30s
  • Use a micro-precision cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Cathode deposition:
  • Using thermal evaporation, sequentially deposit 5 nm of calcium and 100 nm of aluminium through a shadow mask to define an active area for your device
  • Encapsulate devices using a glass coverslip and encapsulation epoxy
  • Expose to UV radiation (350 nm) for ~5 minutes (times vary depending upon source intensity) to set the epoxy

 

Wistia video thumbnail - Guide to make efficient air processed perovskite devices

 

Full length fabrication guide detailing all steps necessary for the fabrication and measurement of perovskite solar cells using Ossila I101 Perovskite Precursor Ink.

 

I101 Device Performance

Below is information on photovoltaic devices fabricated using our standard architecture and inverted architecture recipes for I101 inks. All scans were taken after 10 minutes under illumination of an AM1.5 source, using a voltage sweep from -1.2 V to 1.2 V then from 1.2 V to -1.2 V at a rate of 0.2 V.s-1; no bias soaking was performed on devices.

ArchitectureStandardInverted
Sweep DirectionForwardReverseForwardReverse
Power Conversion Efficiency (%)13.513.712.413.1
Short Circuit Current (mA.cm-2)-20.8-20.8-18.8-18.8
Open Circuit Voltage (V)0.880.900.960.96
Fill Factor (%)73736972

 

I101 standard and inverted architecture perovskite solar celll iv curvesJV curve under AM1.5 irradiation for a standard (left, courtesy of Michael Stringer-Wong, University of Sheffield) and inverted (right, courtesy of Alex Barrows, University of Sheffield) device based on Ossila's I101 ink. Device characteristics were recorded on a reverse sweep.

 

想了解更詳細(xì)的產(chǎn)品信息,填寫(xiě)下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話(huà):

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說(shuō)明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫(xiě)阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專(zhuān)業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國(guó)EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話(huà):0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號(hào):粵ICP備17105262號(hào)  管理登陸
在線客服
麻豆国产成人av在线播放欲色-久久精品国产亚洲av无-人妻少妇日韩久久久久久久久-久久三级三级中文 | 欧美 日韩 色 第一页-91麻豆一区在线观看-国产成人精品久久久久久久久粉嫩-欧美熟妇丰满人妻 | 成人av在线观看av-久操大屁股女人av-日韩在线视频播放成-亚洲成人av有码一区 | 丰满白嫩少妇一区二区三区-久久久久久久久久久久大片-久久97大香蕉-国产av一区二区www | 日韩四级大黄片-在线人妻少妇一区二区三区-久久99五月天综合伊人-91狠狠综合久久久 | 中文字幕熟女裸体激情-av成人天堂在线电影-久久久久9999免费-日韩不卡精品在线观看 | 日本乱中文字幕系列-精品久久久噜噜噜久久x99a-国产一区二区三区最好精华液-国产成人精品微拍视频网站 | 婷婷激情五月天在线视频-久久精品国产亚洲av高清yw-2022天天操夜夜-成年午夜精品久久久久久久 | 神马午夜久久久av-中文日韩av在线免费观看-日韩欧美一级一区二区-国产激情在线视频免费 | 97久久成人精品视频-久久久久久科技有限公司-蜜臀久久99最新合集-亚洲婷婷一区二区 | 国产亚洲中文字幕一区二区-超碰成人天天干-九九热久久久久热久久-超碰人妻人妻超碰在线 | 亚洲+小说+欧美+激情+另类-成人欧美一区二区三区黑人免费-精品视频999-国产精品国产三级国av在线观看 | 欧美最猛黑人黑人猛交-久久久久久精品在线看免费看-日韩一区av福利在线-欧美日韩亚洲欧美h | av麻豆电影网址撸-国产精品久久久免费av-特黄特色毛片免费看-亚洲男人av天堂吧 | 色婷婷一区二区三区四区成人-日韩在线人妻中文字幕-91精品国产91久久久久久最新-黑人玩弄人妻一区二区三区精品 | 国产伦精一品二品三品app-亚洲人妻av在线电影-日韩av人妻在线-激情人妻文学污污 | 中文字幕不卡一区二区-精品女同一区二区三区免费播放-久久婷婷国产91天堂综合精品-不卡久久精品国产亚洲av不卡 | 蜜臀久久99精品久久久久久酒店-91激情福利视频-99热久久久久久久久久久不卡-麻豆爱爱视频播放 | 久久伊人亚洲精品网站-成人 午夜 人妻熟女-国产精品九九久久久久久-日韩色图在线免费观看 | 亚洲+小说+欧美+激情+另类-成人欧美一区二区三区黑人免费-精品视频999-国产精品国产三级国av在线观看 | 91人妻人人澡人人爽人人稍精品-日韩精品深夜久久久久久-久久精品国产亚洲av一卡二卡-久久人妻一区二区三区四区 | 91久久精品九色一区二区三区-国产精品久久久男同-亚洲国产久久久久久久久久久久-国产极品久久久久久久av电影 | 日韩精品中文字幕重口乱-亚洲va欧洲va日韩va-蜜桃免费av一区二区三区-欧美日韩欧美一区二区 | 午夜久久精品国产亚洲av-日韩亚洲高清中文字幕-少妇激情一区二区三区免-91大神国产小青蛙 | 久久999精品国产只有精品-人人妻人人澡人人爽欧美精品-日韩制服在线中文字幕-欧美 日韩 三级 成人 | 欧美日本韩国成人-乱色熟女综合一区二区-精品丰满美女人妻一区二区三区-精品在线观看视频在线观看 | 91亚洲精品久久久-超碰av四十蜜桃av-婷婷97都市激情校园春色亚洲-久久久丝袜国产熟女首页 | 日韩区欧美区nnn-99精品视频在线视频-久久久精品国产亚洲av高清涩受-人人妻人人干人人性 | 国产精品久久久久精品艾秋-免费人妻av一区二区三区-久久精品—区二区三区-久久久国产这里有的是 在线日韩制服中文字幕-亚洲欧美日韩顶级片-日韩中文有码免费视频-一区二区三区四区高清av | 91大神视频免费在线播放-精品久久国产乱码欠精品-国产精品久久久久久久久久人妻-嫩草伊人久久精品少妇av | 人妻系列中文字幕五十路-开心激情婷婷视频网-风流熟女一区二区三区-国产麻豆91av在线 | 日韩成年人在线电影-国产日韩欧美在线观看?-2020最新中文字幕在线-免费观看一区二区三区欧美 | 人妻少妇91精品一区麻豆-99久久精品国产精品久久-久久久久久大秀视频人妻精品-久久久久久久久国内精品影视 | 91精品国产综合久久久久久白拍-日韩美女写真视频网站-熟女av中文字幕久色-天天日天天超碰天天日 亚洲中文字幕在线的-99久久精品蜜桃-日本精品久久在线-久久久久久久久久久精品 | 亚洲制服丝袜人妻另类在线-日韩一区免费在线观看网址-久久久亚洲熟妇熟女精品-久久久久久精品免费非洲 | 在线日韩美女av播放-久久精品久久国产视频-国内av精彩一区二区三区四区-久久婷婷精品国产亚洲av 亚洲欧美另类自拍区-超碰97在线免费观看-天天舔天天操天天插-黄色高清av网站在线观看 | 人妻久久久久有码在线观看-777久久人妻少妇嫩草-日韩亚洲av有码-亚洲国产精品成人久久66 | 中文字幕国产精品av-亚洲精品日韩欧美偷拍-日韩欧美丝袜美腿中文字幕-日日噜噜夜夜狠狠久久香91 日韩av东京热电影-丰满人妻一区二区二区53视频-久久丝袜一区二区三区-国产熟女一区二区三 | 最新一区二区三区中文字幕-成人黄页网站在线观看视频免费-欧美黑人精品在线播放-日韩欧美一级一级一片一片 | 久久久熟妇色综合激情-天天爽天天操天天做天天干-91麻豆精品国产理论片在线观看-久久热这里都是精品 | 中文字幕亚洲综合久久天堂av-日韩啊v视频在线播放-亚洲欧美日韩怡红院av在线乱码-日韩一区,国产二区,欧美三区 |