99麻豆精品原创视频在线观看-久久艹免费视频网站-久久操在线观看视频-久久精品久久综合97久久综合精品-激情五月天丁香综合-久久久国产99久久国产久一-国产亚洲美女精品久久久-久久国产精品99久久久-久久久久久久久91国产精品,韩国巨乳人妻的诱惑,国产中文字幕亚洲区,国产乱人妻精品久久久

產(chǎn)品展示
當(dāng)前位置:首頁 > 全部產(chǎn)品 > 英國Ossila > 碳納米管 > 單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1
Ossila廠家直接訂貨、原裝正品、交期準(zhǔn)時、歡迎新老客戶?。?!

分享到:

只用于動物實驗研究等

Product List

All our SWNTs come packed as dry powders, which can be dispersed within the user's solvent of choice.

Single-Walled Carbon Nanotube Powders

Product codeM2012L1M2013L1M2013L2
Outer Diameter< 2 nm< 2 nm< 2 nm
Length5-50 μm4-20 μm5-30 μm
Specific Surface Area500-700 m2.g-1400-1000 m2.g-1400-1000 m2.g-1
Purity> 90%> 95%> 95%
MSDS  
Sale Quantities1 g250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

Functionalised Single-Walled Carbon Nanotube Powders

Product codeM2014L1M2015L1
Outer Diameter< 2 nm< 2 nm
Length5-30 μm5-30 μm
Specific Surface Area380 m2.g-1380 m2.g-1
Functional GroupCOOHOH
Functional Group Wt.%~ 3%~ 4%
Purity> 90%> 90%
MSDS  
Sale Quantities250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

 *For larger orders, please us to discuss prices.

 What are Single-Walled Carbon Nanotubes?

SWNTs are sheets of graphene that have been rolled up to form a long hollow tube, with walls a single atom thick. The existence of thin, hollow carbon tubes has been known about since their first observations by L. V. Radushkevich and V. M. Lukyanovich in 1952, however, the first observations of SWNTs themselves were not until 1976 when M. Endo synthesised a series of hollow carbon tubes via chemical vapour-growth. Wider interest in these low-dimensional materials did not occur until 1991, when two articles were independently published by: i) S. Iijima on the fabrication of multi-walled carbon nanotubes via arc discharge, and ii) J. W. Mintire, B. I. Dunlap, and C. T. White  on the predicted properties of SWNTs. The combination of a simple method for producing SWNTs and the potentially extraordinary properties they exhibit kick-started the growth of a wider research community into carbon nanotubes.

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

Much like graphene, SWNTs have properties that differ considerably to those of bulk carbon (e.g. graphite). The mechanical properties vary significantly depending upon the axis you are measuring with nanotubes having extremely high Youngs Moduli (Up to 1TPa) and tensile strength (Up to 100 GPa) along the longitudinal axis. Along the radial axis, these values are a few orders of magnitude lower.

The electrical properties of carbon nanotubes are dependent upon the orientation of the lattice. The lattice orientation is given by two parameters (n, m). The image to the right shows how the n and m orientations relate to the longitudinal axis of the nanotube and the rotational axis. There are typically three types of nanotubes that can form, these are: the armchair (where n = m), zig-zag (n=x, m=0), and chiral (n=x, m=y).

Carbon nanotubes can exhibit either metallic properties or semiconducting properties, depending upon the orientation of the lattice. Zig-zag and armchair carbon nanotubes exhibit metallic properties, whilst chiral nanotubes can be either metallic or semiconducting depending upon the difference between the n and m units. In addition to this ability to exhibit both metallic and semiconducting electronic structures carbon nanotubes offer exceptional charge carrier mobilities, this is due to the combination of the delocalisation of electrons across the lattice and the small dimensions in the radial axis constraining movement of charge carriers along the longitudinal axis of the tubes.

Lattice parameters of single walled carbon nanotubes

How the lattice parameters relate to the physical structure of carbon nanotubes.

In addition to the electronic and mechanical properties of SWNTs, the thermal properties of these materials exhibit extreme anisotropy. Along the length of the tube, thermal conductivity can be up to 9 times higher than materials such as copper. However - across the radial axis, the thermal conductivity can be 250 times lower than that of copper. Much like its electrical and mechanical properties, SWNT's thermal properties can be severely affected by the presence of defects along the nanotube length. The presence of these defects lead to phonon scattering. When these defects interact with low frequency phonons, scattering can occur - reducing the thermal conductivity.

At the time being, there are limited commercial applications for SWNTs. They are used in composite materials as a method of improving mechanical strength. One of the current limiting factors in improving the range of applications of carbon nanotubes is the ordering of nanotube structure. Current commercial applications utilise disordered bundles of nanotubes, and these bundles have a significantly lower performance than that of individual nanotubes. Potential future uses for carbon nanotubes could be seen in areas such as transparent conducting layers for use in display technologies, conductive wires for nanoelectronics, electrodes in thin-film electronic devices, carbon nanotube yarns for ultra-strong fabrics, thermal management systems, advanced drug delivery systems and many other wide-ranging fields.

 Dispersion Guides

SWNTs are insoluble as prepared. However, through the use of surfactants and ultrasonic probes, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a nonionic surfactant is needed, we recommend surfactants with high molecular weights.

  • Weigh out the desired amount of carbon nanotubes.
  • Mix together your solvent and surfactant of choice at the desired surfactant concentration; this should be below the critical micelle concentration of the surfactant.
  • Add the solvent-surfactant mix to the dry powder and shake vigorously to mix.
  • Either place an ultrasonic probe into the solution, or place the solution into an ultrasonic bath.
    • Be careful about the length of time and power used - because damage to the carbon nanotubes can occur, shortening their average length.
    • The resulting solution will be a mixture of suspended SWNT's and bundles of SWNT's, further sonication will help break up the bundles.
  • To separate out the individual nanotubes in solution from the bundles, the solution should be placed into a centrifuge. If the solution is centrifuged for a longer time and/or at a higher speed, the smaller bundles will be removed, narrowing the distribution of suspended nanotubes.

For functionalised SWNTs, it is possible to disperse them without the use of any surfactants. However, the total concentration of dispersed nanotubes will be lower. A maximum of 0.1mg/ml can be achieved for -COOH and -OH.

Technical Data

General Information

CAS number7440-44-0
Chemical formulaCxHy
Recommended DispersantsDI Water, DMF, THF, Ethanol, Acetone
SynonymsSingle-Walled Carbon Nanotubes, Single-Wall Carbon Nanotube, Carbon Nanotube, SWNT, CNT
Classification / Family1D materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, thin-film electronics
AppearanceBlack fibrous powder

 

Characterisation

Single Walled Carbon Nanotube Raman SpectraRaman spectra of SWNT samples showing the presence of the G+ and G- band, the D band, and also the radial breathing mode peaks.

 

Single Walled Carbon Nanotube TEM ImageTEM image of an individual SWNT.

 

Single Walled Carbon Nanotube COOH XPS SpectraXPS spectra of the C1s peak for functionalized carbon nanotubes showing the presence of C-C, C-O, and O-C=O bonds.

 

1D Related Products

Single-Wall Carbon Nanotubes

Single-Wall Carbon Nanotubes

Double-Walled Carbon Nanotubes

Double-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Single-Walled Carbon Nanotube Publications

  • Filamentous Growth of Carbon Through Benzene Decomposition, A. Oberlin et. al., J. Cryst. Growth, 32, 335-349 (1976); DOI: 10.1016/0022-0248(76)90115-9
  • Helical Microtubules of Graphitic Carbon, S. Iijima, Nature, 354, 56-58 (1991); doi: 10.1038/354056a0
  • Are Fullerene Tubules Metallic?, J. W. Mintire et al., Phys. Rev. Lett., 68, 631 (1992); doi: 10.1103/PhysRevLett.68.631
  • Large-Scale Production of  Single-Walled Carbon Nanotubes by the Electric-Arc Technique, C. Journetet. al., Nature, 338, 756-758, (1997); doi: 10.1038/41972
  • Bandgap Fluorescence from Individual Single-Walled Carbon Nanotubes, M. J. O'Connell et. al.,Science, 297, 593-596, (2002); doi: 10.1126/science.1072631
  • Atomic Structure and Electronic Properties of Single-Wall Carbon Nanotubes Probed by Scanning Tunnel Electron Microscope at Room Temperature. 
    A. Hassanien et. al. Appl. Phys. Lett., 73, 3839 (1998); DOI: 10.1063/1.122910
  • Solution Properties of Single-Walled Carbon Nanotubes. J. Chen et. al., Science, 282, 95-98, (1998); DOI: 10.1126/science.282.5386.95
  • Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. S. M. Bachilo et. al., 298, 2361-2366, (2002); DOI: 10.1126/science.1078727
  • Carbon Nanotubes—The Route Towards Applications. R. H. Baughman et. al. Science, 297, 787-792, (2002) DOI: 10.1126/science.1060928

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

深圳市澤拓生物科技有限公司是國內(nèi)專業(yè)的單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1廠家,歡迎廣大顧客來電咨詢!
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
用心服務(wù)成就你我
国产一区二区黄色在线观看-国产一区二区在线免费播放-久久精品偷拍视频观看-日本一区二区中文字幕在线 | 国产中文字幕第一页在线观看-日韩av手机在线看-国产又粗又硬又黄又爽的免费视频-97超碰人操人妻 激情五月婷婷伊人久久综合-妇女人妻丰满少妇中文字幕-julia人妻av一区二区三区-欧美国产综合视频一区二区三区 | 中文字幕日韩熟女人妻-人人妻人人插人人爱-huang片网站在线播放-人妻一区二区三区久久夜夜嗨 | 人妻另类一区二区三区-国产成人精品久久麻豆-国产三级久久精品99色青草-97久久人妻网站 | 国产日韩欧美第1页-国产精品久久久久久久hd-亚洲天堂av在线看-青青久久精品国产免费看青青草 | 超91久久福利视频-99久久成人国产精品免费-精品九九九热视频这里只有精品-男人的天堂av天堂 | 国产又粗又硬又大爽黄视频-巨乳人妻中文字幕在线观看-日本精品久久久久中文人妻人妻-永久性日韩av网站网址在线观看 | 中文字幕 日韩精品 人妻-日韩欧美人妻中文字幕在线-久久好看的中文字幕-亚洲国产成人精品女人久久久孕妇 | 加勒比久久综合久伊人爱爱-特黄特色免费大片在线观看-国产成人精品亚洲男人-久久久久久久久综合网 | 精品三级国产精品三级在线播放-精品九九九九九香蕉臀蜜桃-欧美日韩一区二区三区成人影院-超碰大香蕉100 | 超碰在线免费资源-国产熟女乱淫一区二区-国产精品久久久久久久久白浆-熟女av在线一区 | 白石茉莉奈亚洲一区二区-日韩在线视频观看不卡-久久精品国产亚洲av忘忧草18-欧美精品成人丰满人妻 | 日韩av在线播放一区二区-亚洲亚洲成人三级电影-蜜臀精品一区二区三区在线观看-日韩三级四级片在线观看视频 | 九九99热久久99精品国产99热-99免费国产精品视频-日韩红桃视频在线观看-亚洲高清一级不卡av | 91精品国产92久久-欧美一区二区三区视频在线看-五月婷婷丁香花视频-日韩美女视频免费在线观看 | 国产91成人精品在线观看-av一区二区三区三区-国产一级精品久久久-色午夜久久久久蜜桃 | 亚洲国产欧美在线人成aⅴ-国色天香精品二区三区-久日视频在线观看免费-91精品久久久久精品一区 | 五月激情婷婷俺也去-av男人的天堂久久-久久人人爽人人爽人人片av东京热-欧美日韩一级成人免费 | 999在线观看免费网站视频-亚洲免费av啊啊啊-加勒比一区二区在线观看-亚洲中文字幕人妻中文 | 欧美日韩人妻中文一区二区-国产又粗又硬又猛又大的视频-男人操女人逼逼文章-久久色资源中文字幕 综合久久高婷婷-日本一区久久久久久-日韩精品中文字幕人妻中出-日韩黄色蜜桃久久 | 久久婷香五月综合色啪-日韩高清人妻中文字幕一区二区-亚洲熟女久久一区-亚洲中文精品人人免费 | 超碰98免费在线-精品成人人妻av一区二区-精品熟女少妇一二区-天天干天天操天天日天天摸 | 丰满人妻精品一区二区在线-久久久艹视频在线观看-日韩av中文字幕手机在线观看-国产老熟女一区二区三区 | 99精品一区二区人妻-久久久中文精品字幕-久久久久久精品人妻一区二-欧美mv日韩mv国产精品网站 | 国产人妻一区二区三区网站-人妻激情偷一区二区三区-国产一区二区三区三区在线观看-丁香花啪啪啪啪啪啪啪五月天网站 | 色综合久久久久综合一小说-91福利视频下载-一本色道久久综合狠狠躁最新章节-999国产精品亚洲7777 | 欧美激情亚洲精品另类-久久高清国产精品-中文字幕人妻欧美在线-日本久久免费看 | 亚洲第一精品国产麻豆-亚洲精品乱码久久久久久s8-欧美日韩精品中文字幕在线观看-麻豆网站视频在线看 | 精品人妻av中文字幕乱-色婷婷一区在线视频-午夜精品久久久久久久99热蜜臀-人人插人人妻人人爱 | 成人乱码一区二区三区av日韩-狠狠久久久久人妻麻豆-日韩 欧美 精品 在线-91精品国产综合久久久久久粉嫩 | 18禁国产一区二区在线看-亚洲国产精品久久久久婷婷884-日韩va欧美激情-日韩aⅴ视频在线播放 | 国产99视频精品免视看9-激情综合网激情五月网-成人av在线不卡一区-蜜臀久久99精品,fv | av日韩一区中文字幕-91免费影片在线观看-国产精品99久久久久久人红楼-日韩 精品 欧美 啪啪啪啪啪啪 | 91成人在线观看喷-日本精品中文字幕网-久久热这里只有精品99-深夜国产福利视频在线观看 | 久久精品人人妻人人澡-日本18禁免费久久-人妻av中文字幕在线观看-国产亚州色婷婷久久99精品91 | 久久久亚洲熟妇熟女1000部-六月婷婷,中文字幕-欧美黑人精品在线视频-中文字幕日产av最新 | 日韩人妻色在线-精品区一区二区三区人妻久久久-欧美激情一区二区三区在线-五月婷婷激情影院 | 欧美激情亚洲精品另类-久久高清国产精品-中文字幕人妻欧美在线-日本久久免费看 | 日韩高清一区二区三区视频-日本一二三不卡书屋-蜜桃av一区二区三区视频在线-久久久国产综合精品女国产盗摄 | 日韩福利在线一区二区三区-久久婷婷丁香激情-人妻熟女一区二区-日韩国产精品自拍视频 | 日韩天天综合网久久天天综合精品-欧美激情视频区一区二区三在线-九九热国产在线经典-69国产亚洲精品成人av久久 |